Численный анализ наноструктуры и свойств многокомпонентных липидных мембран в везикулярных системах на основе данных МУРН

Е.В. Земляная¹, М.А. Киселев², В.Л. Аксенов², Р. Нойберт³, И. Кольбрехер⁴ ¹е-mail: elena@jinr.ru, Лаборатория информационных технологий, ОИЯИ, Дубна; ²Лаборатория нейтронной физики, ОИЯИ, Дубна; ³Университет Мартина Лютера, Халле, Германия; ⁴Институт Пауля Щеррера, Виллиген, Швейцария

Введение

На протяжении ряда лет в ЛИТ ОИЯИ в сотрудничестве с ЛНФ ОИЯИ проводится численное исследование наноструктуры и свойств однои многокомпонентных липидных систем в полидисперсных везикулярных системах на основе экпериментальных данных малоуглового рассеяния нейтронов (МУРН), получаемых как в ЛНФ, так и в зарубежных научных центрах. В 2008 году проведен анализ данных МУРН для четырехкомпонентной мембраны на основе церамида 6 в однослойных везикулах при двух значениях температуры: 32° С и 60° С [1].

Активный интерес к экспериментальным исследованиям многокомпонентных липидных систем, приготовленных на основе церамида 6, связан с возможностью получать информацию об принципиальных закономерностях строения и функционирования липидной матрицы верхнего слоя кожи млекопитающих stratum corneum (SC). Важнейшим вопросом организации липидной матрицы SC является физико-химическая основа сверхсильного притяжения между соседними бислоями [2]. Исследование однослойных везикул в избытке воды представляет собой один из методов проверки этого взаимодействия [3].

Малоугловое рассеяние нейтронов (МУРН) [4],[5] – эффективный метод исследования структуры везикулярных систем в избытке воды, позволяющий определять размер везикулы и внутреннюю наноструктуру ее липидного бислоя (толщину бислоя, толщину гидрофильной и гидрофобой областей, количество молекул воды в гидрофильной части бислоя и др.) [5].

Ниже представлены некоторые результаты проведенного по данным МУРН численного анализа структуры и свойств четырехкомпонентной мембраны церамид 6 / холестерин / пальмитиновая кислота / сульфат холестерина в полидисперсной популяции однослойных везикул. Измерения спектров МУРН проводились на малоугловом спектрометре SANS-1 PSI (Виллинген, Швейцария) при температуре 32°С и 60°С.

Метод численного анализа

Для определения формы и внутренней структуры везикул использовался метод разделенных формфакторов SFF [5]-[8], разработанный для исследования однослойных везикул диаметром ≥ 500 Åпо данным МУРН. SFF метод, в отличие от других известных подходов (например, оболочечная модель [4], приближение Гинье [9, 10]), позволяет использовать для аппроксимации распределения плотности длины рассеяния нейтронов в направлении нормали мембраны $\rho(x)$ любую подходящую функцию [5],[6]. В наших расчетах функция $\rho(x)$ аппроксимировалась на основе гидрофобно-гидрофильного (НН) приближения (см. рис. 1).

Рис. 1. НН-аппроксимация плотности длины рассеяния поперек липидного бислоя. d – толщина мембраны, D – толщина толщина гидрофобной части мембраны. Плотность длины рассеяния углеводородных хвостов $\rho_{CH} = -0.36 \cdot 10^{10}$ см⁻², плотность длины рассеяния воды $\rho_{D2O} = 6.33 \cdot 10^{10}$ см⁻².

Как показано в [11], НН-приближение с линейным распределением воды внутри мембраны является эффективным для моделирования липидных систем с большой величиной гидратации или малой полярной головой молекул, поскольку для таких везикулярных систем вклад распределения воды внутри бислоя в общее распределение плотности длины рассеяния нейтрона $\rho(x)$ доминирует по сравнению с вкладом от полярной части мембраны [12]. В рамках ННприближения только два свободных параметра необходимы для моделирования функции $\rho(x)$: толщина мембраны d и толщина гидрофобной области D. Поэтому такой подход существенно улучшает качество подгонки по сравнению с более сложными моделями $\rho(x)$ и обеспечивает возможность определить основные параметры везикулярных систем без привлечения дополнительных экспериментальных методов (рассеяние света, дифракция и т.д.).

Приведем кратко основные формулы, определяющие SFF метод. Макроскопическое сечение монодисперсной популяции везикул определяется формулой

$$\frac{d\Sigma}{d\Omega_{mon}} = nF_s(q, R)F_b(q, d)S(q), \qquad (1)$$

где S(q) – структурный фактор в форме Дебая [8], n – число везикул на единицу объема, F_s и F_b – соответственно формфактор бесконечно тонкой сферы и формфактор бислоя:

$$F_s(q,R) = \left(4\pi \cdot \frac{R^2}{qR} \cdot \sin(qR)\right)^2, \qquad (2)$$

$$F_b(q,d) = \left(\int_{-d/2}^{d/2} \rho(x) \cdot \cos(qx) \cdot dx\right)^2.$$
(3)

С учетом полидисперсности везикулярной системы, описываемой распределением Шульца

$$G(R) = \frac{R^m}{m!} \left(\frac{m+1}{\langle R \rangle}\right)^{m+1} \cdot \exp\left[-\frac{(m+1)R}{\langle R \rangle}\right],$$

где <R> – средний радиус везикулы, m – коэффициент полидисперсности, макроскопическое сечение $d\Sigma(q)/d\Omega$ полидисперсной популяции везикул имеет вид

$$\frac{d\Sigma}{d\Omega}(q) = \frac{\int\limits_{R\min}^{R\max} \frac{d\Sigma}{d\Omega \max}(q, R) \cdot G(R, < R >) \cdot dR}{\int\limits_{R\min}^{R\max} G(R, < R >) \cdot dR}$$

и далее корректируется с учетом некогерентного фона IB и функции разрешения спектрометра [13], которая вычисляется согласно [14]. Пределы интегрирования R_{min} и R_{max} соответственно равны 100 Å и 1000 Å. Параметрами фитирования являются: средний радиус везикулы $\langle R \rangle$, коэффициент полидисперсности m, число везикул n на единицу объема, величина некогерентного фона IB и параметры функции $\rho(x)$, моделирующей плотность длины рассеяния нейтронов (в нашем случае это толщина мембраны d и толщина гидрофобной области D). Плотность длины рассеяния углеводородных хвостов фиксировалась $\rho_{CH} = -0.36 \cdot 10^{10} \text{ см}^{-2}$ так же как и плотность длины рассеяния воды $\rho_{D2O} = 6.33 \cdot 10^{10} \text{ см}^{-2}$ [4]. Среднеквадратичное отклонение от среднего радиуса $\langle R \rangle$ рассчитывалось по формуле $\sigma = \sqrt{(m+1)^{-1}}$.

Расчеты проводились с использованием программы DFUMIL из библиотеки JINRLIB (http://www.jinr.ru/programs/jinrlib), реализующей обобщенный метод наименьших квадратов.

Результаты и выводы

Подгонка расчетных спектров МУРН к экспериментальным данным в полном диапазоне значений вектора рассеяния 0.0033 Å⁻¹< q < 0.56 Å⁻¹ на основе метода SFF-HH не обеспечила хорошего согласия с экспериментальными спектрами в области малых значений q [1]. Это можно объяснить наличием сильного короткодействующего взаимодействия везикул между собой и образованием кластерных структур, что не учитывается в рамках рассматриваемой модели.

Данное предположение обусловлено следующими факторами. Экспериментальные спектры в области малых значений q лежат выше расчетных кривых, хотя влияние структурного фактора в форме Дебая учитывалось при проведении вычислений, а кулоновское взаимодействие, возникающее из-за наличия сульфата холестерина, экранировалось за счет Ph=9 и наличия в водном растворе молекул NaCl. С другой стороны, влияние дальнодействующего кулоновского межмембранного взаимодействия привело бы к уменьшению экспериметальных значений по сравнению с расчетом в области влияния формфактора сферы (малые значения q). Поэтому можно заключить, что увеличение макроскопического сечения МУРН связано с агрегацией однослойных везикул в кластеры.

Известно два вида агрегации, основанной на короткодействующих взаимодействиях. Первый вид – это слияние однослойных везикул в многослойные с существенно бо́льшим размером. Такая поверхностная агрегация (слияние везикул) возникает за счет короткодействующих гидратационных сил притяжения. Однако в данном случае возникновение многослойных везикул не подтверждается видом экспериментального спектра. Действительно, в спектре отсутствует характерный для многослойных везикул дифракционный пик в области формфактора липидного бислоя $q \approx 0.1 - 0.15 \text{Å}^{-1}$.

В работах [2],[3] была высказана гипотеза о *втором* типе агрегации, возникающей при укреплении структуры плоских многослойных модельных мембран липидной матрицы SC за счет полностью вытянутой (ПВ) конформации молекул

Таблица 1. Параметры 1% (w/w) полидисперсной везикулярной системы на основе церамида 6 в зависимости от температуры, полученные подгонкой в диапазоне $q \ge 0.02 \text{ Å}^{-1}$

$T,^{o}C$	<r>,Å</r>	m	$\sigma, \%$	d,Å	D,Å
32	$256{\pm}1$	$18 {\pm} 0.5$	23	49 ± 2	27.0 ± 2
60	291 ± 1	$31{\pm}0.5$	18	45 ± 2	25.5 ± 3

церамида 6 (арматурное укрепление многослойной структуры). В однослойной изолированной везикуле все молекулы церамида 6 находятся в односторонней (OC) конформации. При стерическом контакте двух сферических везикул, возможен переход молекулы церамида 6 из OC конформации в ПВ конформацию за счет chain flip перехода [3].

Рис. 2. (а) Пример контакта двух однослойных везикул в одной точке за счет перехода молекулы церамида 6 в ПВ конформацию. (б) Агрегация однослойных многокомпонентных везикул на основе церамида 6 в кластерную структуру типа "бус".

При этом возникает контакт двух сфер в одной точке (рис.2а). Взаимодействие между везикулами является короткодействующим и не приводит к возникновению структурного фактора. Однако в результате такого взаимодействия возможно образование везикулярных агрегатов типа "бус" (рис. 2б).

Поскольку эффект взаимодействия везикул должен существенно влиять на поведение кривой спектра МУРН с области малых q, была выполнена подгонка параметров по данным МУРН в диапазоне $q > 0.02 \text{Å}^{-1}$, где влияние взаимодействия везикул на спектр МУРН незначительно. Соответствующие значения параметров, указанные в табл. 1, не противоречат данным для аналогичных многокомпонентных систем, полученным в [2] на основе нейтронной дифракции и в [11] на основе МУРН.

На рис. 3,4 в сравнении с экспериментальными данными представлены расчетные кривые, построенные для полного диапазона значений q (0.0033 Å⁻¹< q < 0.56 Å⁻¹) с использованием указанных в табл. 1 параметров. Видно, что такая подгонка обеспечивает лучшее согласие с данными МУРН для больших значений q, в то время как для малых значений q, естественно, наблюдается существенное расхождение с экспериментом.

Рис. 3. Результаты фитирования в рамках SFF-НН модели спектров МУРН, измеренных на полидисперсной популяции однослойных везикул церамид 6 / холестерин / пальмитиновая кислота / сульфат холестерина при температуре 32° C. Подгонка выполнена в диапазоне q ≥ 0.02 Å¹. Параметры подгонки указаны в табл. 1

Рис. 4. То же, что и на рис. 3, но для температуры $60^{\rm O}{\rm C}$

Полученное значение толщины изогнутого липидного бислоя мембраны составляет 49.0±2 Å при 32^{o} С, что больше толщины бислоя этой же мембраны в плоском состоянии 46.45 ± 0.03 Å [2]. Это подтверждает сделанный в [5] относительно фосфолипидов вывод о зависимости толщины липидного бислоя от его кривизны. Бо́льшая толщина изогнутого бислоя является следствием менее плотной упаковки углеводородных цепочек в нем.

Таким образом, по части спектра q > 0.02 Å⁻¹ удается восстановить параметры, определяющие внутреннюю структуру бислоя и величину некогерентного фона. В то же время для обоснованного определения параметров среднего радиуса и полидисперсности необходимо учитывать наличие в везикулярной системе уже упомянутых выше кластерных структур, что требует дальнейшего развития модели.

Расчеты на основе метода разделенных формфакторов показали, что наноструктура бислоя однослойных везикул в избытке воды отличается от наноструктуры частичного гидратированного плоского бислоя. В области малых углов рассеяния наблюдается расхождение расчетной кривой с экспериментальным спектром, которое указывает на сильное короткодействующее взаимодействие везикул между собой и образование кластерных структур, что подтверждает явление chain-flip переходов.

Полученный результат имеет существенное значение для понимания диффузии воды через SC человека, а также открывает направление поиска веществ, увеличивающих проницаемость кожи для лекарств. Известно, что нативная (биологическая) липидная матрица кожи млекопитающих является плохоупорядоченным двухфазным жидким кристаллом. В дифракционных экспериментах на нативных мембранах SC удается измерять, как правило, только первый и второй дифракционные пики. Таким образом, в такой мембране возможны участки большой кривизны. Менее плотная упаковка молекул изогнутого бислоя облегчает диффузию воды в ламеллярном направлении перпендикулярно бислою (липофильная диффузия). Отсюда следует, что поиск веществ, увеличивающих проницаемость кожи человека для лекарств, следует вести

среди веществ, увеличивающих дефекты (развивающих доменную структуру) липидной матрицы SC.

Список литературы

- Е.В Земляная, М.А. Киселев, Р. Нойберт, И. Кольбрехер, В.Л. Аксенов // Поверхность: рентгеновские, синхротронные и нейтронные исследования, №11, 2008, с.14-19
- [2] M.A. Kiselev, N.Yu. Ryabova, A.M. Balagurov, S. Dante, T. Hauss, J. Zbytovska, S. Wartewig, R.H.H. Neubert. // European Biophys. J. 2005. V. 34. P. 1030.
- [3] М.А. Киселев. // Кристаллография. 2007. V. 52.
 P. 572.
- [4] Schmiedel H., Joerchel P., Kiselev M., Klose G. // J. Phys. Chem. B. 2001. V. 105. P. 111.
- [5] M.A.Kiselev, E.V.Zemlyanaya, V.K.Aswal, R.H.H.Neubert. // European Biophys. J. 2006. V. 35. N. 6. P. 477.
- Kiselev M.A., Lesieur P., Kisselev A.M., Lombardo D., Aksenov V.L. // J. Appl. Phys. A. 2002. V. 74.
 P. S1654.
- [7] Земляная Е.В., Киселев М.А. Определение структуры однослойных везикул DMPC по данным малоуглового рассеяния нейтронов в рамках модели разделенных формфакторов. Сообщение РЗ-2002-163. Дубна: ОИЯИ. 2002. 10с.
- [8] М.А.Киселев, Д.Ломбардо, А.М.Киселев, П.Лези, В.Л.Аксенов // Поверхность. 2003. No. 11. C.20.
- [9] Свергун Д.И., Фейгин Л.А. Рентгеновское и нейтронное малоугловое рассеяние. М.: Наука, 1986. 276с.
- [10] W. Knoll, J. Haas, H. Stuhrmann, H.H, Fuldner, H. Vogel, E. Sackmann // J. Appl. Cryst. 1981. V.14. P.191.
- [11] E.V.Zemlyanaya, M.A.Kiselev, J.Zbytovska, L.Almasy, V.K.Aswal, P.Strunz, S.Wartevig, R.H.H.Neubert. // Crystallography reports. 2006. V.51 Suppl. 1. P. S22.
- [12] M.A.Kiselev, E.V.Zemlyanaya, V.Aswal. // Crystallography Rep. 2004. V.1. P.S131.
- [13] Ostanevich Y.M. // Makromol. Chem., Macromol. Symp. 1988. V. 15. P. 91.
- [14] Pedersen J.S., Posselt D., Mortensen K. // J. Appl. Cryst. 1990. V. 23. P. 321.
- [15] Dymov S.N., Kurbatov V.S., Silin I.N., Yaschenko S.V. // Nucl. Instum. Methods in Phys. Res. A. 2000. V. 440. P. 431.